Learning cross-level certain and possible rules by rough sets

نویسندگان

  • Tzung-Pei Hong
  • Chun-E Lin
  • Jiann-Horng Lin
  • Shyue-Liang Wang
چکیده

Machine learning can extract desired knowledge and ease the development bottleneck in building expert systems. Among the proposed approaches, deriving rules from training examples is the most common. Given a set of examples, a learning program tries to induce rules that describe each class. Recently, the rough-set theory has been widely used in dealing with data classification problems. Most of the previous studies on rough sets focused on deriving certain rules and possible rules on the single concept level. Data with hierarchical attribute values are, however, commonly seen in real-world applications. This paper thus attempts to propose a new learning algorithm based on rough sets to find cross-level certain and possible rules from training data with hierarchical attribute values. It is more complex than learning rules from training examples with single-level values, but may derive more general knowledge from data. Boundary approximations, instead of upper approximations, are used to find possible rules, thus reducing some subsumption checking. Some pruning heuristics are also adopted in the proposed algorithm to avoid unnecessary search.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning with Hierarchical Quantitative Attributes by Fuzzy Rough Sets

This paper proposes an approach to deal with the problem of producing a set of cross-level fuzzy certain and possible rules from examples with hierarchical and quantitative attributes. The proposed approach combines the rough-set theory and the fuzzy-set theory to learn. Some pruning heuristics are adopted in the proposed algorithm to avoid unnecessary search. A simple example is also given to ...

متن کامل

Mining from incomplete quantitative data by fuzzy rough sets

Machine learning can extract desired knowledge from existing training examples and ease the development bottleneck in building expert systems. Most learning approaches derive rules from complete data sets. If some attribute values are unknown in a data set, it is called incomplete. Learning from incomplete data sets is usually more difficult than learning from complete data sets. In the past, t...

متن کامل

Fuzzy rough sets with hierarchical quantitative attributes

Machine learning can extract desired knowledge and ease the development bottleneck in building expert systems. Among the proposed approaches, deriving classification rules from training examples is the most common. Given a set of examples, a learning program tries to induce rules that describe each class. The rough-set theory has served as a good mathematical tool for dealing with data classifi...

متن کامل

Learning Fuzzy Rules from Incomplete Quantitative Data by Rough Sets

In this paper, we deal with the problem of learning from incomplete quantitative data sets based on rough sets. Quantitative values are first transformed into fuzzy sets of linguistic terms using membership functions. Unknown attribute values are then assumed to be any possible linguistic terms and are gradually refined according to the fuzzy incomplete lower and upper approximations derived fr...

متن کامل

Learning Fuzzy {\beta}-Certain and {\beta}-Possible rules from incomplete quantitative data by rough sets

The rough-set theory proposed by Pawlak, has been widely used in dealing with data classification problems. The original rough-set model is, however, quite sensitive to noisy data. Tzung thus proposed deals with the problem of producing a set of fuzzy certain and fuzzy possible rules from quantitative data with a predefined tolerance degree of uncertainty and misclassification. This model allow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2008